2018 Fall CTP431: Music and Audio Computing

Fundamentals of Musical Acoustics

Graduate School of Culture Technology, KAIST Juhan Nam

Outlines

- Introduction to musical tones
- Musical tone generation
 - String
 - Pipe, Membrane
- Properties of musical tones
 - Time-domain
 - Frequency-domain
 - Time-Frequency domain
- Human perception

Introduction to Musical Tones

Taxonomy of Musical Instruments

Source: https://jameskennedymonash.wordpress.com/2012/05/06/mind-map-taxonomy-of-musical-instruments/

Musical Tone Generation

Musical Tone Generation

Musical Tone Generation: String

- 1. Drive force on a sound object
- 2. Vibration by restoration force
- 3. Propagation
- 4. Reflection
- 5. Superposition
- 6. Standing Wave (modes)
- 7. Radiation

Musical Tone Generation: String

• One-dimensional ideal vibrating string

Wave Propagation

• Explained by wave equation on the vibrating string

General solution

$$y(x,t) = y_r(t - x / c) + y_l(t + x / c)$$

Any left-traveling wave, any right-traveling wave and the sum of the two satisfy the wave equation.

(An example of solutions)

$$y(x,t) = A \cdot \sin(\omega t + kx)$$

Note that wave is a function of time and position

Source: https://www.acs.psu.edu/drussell/Demos/wave-x-t/wave-x-t.html

Wave Reflection

• Explained by the **boundary conditions**

Source: http://www.acs.psu.edu/drussell/Demos/reflect/reflect.html

Wave Superposition and Standing Wave

 The sum of two travelling waves in opposite directions with the same frequency cancel or reinforce each other, creating a stationary oscillation

Source: http://www.acs.psu.edu/drussell/Demos/superposition/superposition.html

Complex Harmonic Oscillation

• Combination of modes are determined by the **initial conditions** (including the string length)

Video

https://www.youtube.com/watch?v=_X72on6CSL0

Musical Tone Generation: Pipe

- Analogous to ideal 1D string
 - Woodwind or brass instrument: flute, clarinet, trumpet
 - Blowing: continuous excitation
 - Longitudinal pressure wave to travel in air column

Source: https://www.acs.psu.edu/drussell/Demos/StandingWaves/StandingWaves.html

Musical Tone Generation: Membrane

- 2D wave equation: y(x, y, t)
 - Drum, percussion
 - Boundary condition: by the shape of membrane
 - Circular harmonic oscillation \rightarrow generate inharmonic tones

Source: https://www.acs.psu.edu/drussell/Demos/MembraneCircle/Circle.html

Properties of Musical Tones

- Time domain
 - Intensity (dynamics)
 - Amplitude envelope (ADSR)
- Frequency domain
 - Pitch (fundamental frequency)
 - Spectral envelope (formant)
 - Harmonicity: ratio between tonal and noise
 - Inharmonicity
- Time-Frequency domain
 - Temporal changes of spectral envelope

Sound Generation and Perception

Sound Perception

- human auditory system
 - Ears (physiological sense) and brain (cognitive sense)
- Ears
 - A series of highly sensitive transducers
 - Three parts
 - Outer, middle and inner ears
 - Transform sound into sub-band signals
- Brain
 - Segregate and organize the auditory stimulus
 - Recognize loudness, pitch and timbre

Outer Ear

- Pinnae
 - Collect sounds: http://www.douglas-self.com/MUSEUM/COMMS/ear/ear.htm
 - Related to recognize the sound direction (spatial sound)
 - Head-related transfer function (HRTF)
- Auditory canal
 - Protect ear drums
 - Quarter-wave resonance: boost the vibration around 3kHz by 15-20 dB
- Ear drum
 - Membrane that transduces air vibration to mechanical vibration
 - Malleus (hammer) is attached to it

Middle Ear

- Ossicles
 - malleus (hammer), incus (anvil) and stapes(stirrup)
 - The smallest bones in human body
 - Impedance matching: between air pressure (outer) and fluid (inner)
 - Without ossicles, only about 1/30 of the sound energy would have been transferred to inner ears
 - Amplification
 - Work as a lever: membrane size changes from the large (ear drum) to the small (oval windows)
- Muscles
 - Reduce the sound transmission in response to loud sounds

Inner ears

- Cochlear
 - Transduces fluid vibration to nerve firing
- Basilar membrane
 - Fluctuate at different positions selectively according to the frequency of incoming vibration
 - Similar to a bank of band-pass filters
- Organ of Corti
 - One row of inner hair-cell: fire neural spikes
 - Three rows of outer hair-cell: gain control

Source: http://acousticslab.org/psychoacoustics/PMFiles/Module03a.htm

Auditory Transduction

http://www.youtube.com/watch?v=PeTriGTENoc

References

- UNSW Music Acoustics Website
 - http://newt.phys.unsw.edu.au/music/
- Stanford Music150 (by Tom Rossing)
 - https://ccrma.stanford.edu/courses/150/
- The Science of Sound (3rd Edition)
 - Thomas D. Rossing, F. Richard Moore, and Paul A. Wheeler