2018 Fall CTP431: Music and Audio Computing

Digital Audio

Graduate School of Culture Technology, KAIST Juhan Nam

Outlines

- Introduction
- Sampling
- Quantization
- Digital audio standards
- Playback Rate Conversion / Resampling

Introduction

Digital Representations

- Sampling and Quantization
 - Sound (samples)
 - Image (pixels)
- Trade-off
 - Between quality and data size

Digital Audio Chain

Microphone and Speakers

- Microphones
 - Sound to electrical signal
 - Dynamic mic: Fleming's right-hand rule
 - Condenser mic: Q = CV, C = A/d
 - Pre-amp

(A= area, D= distance)

Output

Output

Frequency

Frequency

high-pass

high-pass

band-pass

low-pass

Two-way

crossover

Three-way

crossover

- Loudspeakers
 - Electrical signal to sound
 - Similar to dynamic mic in principle
 - Fleming's left-hand rule
 - Crossover networks: woofer / tweeter
 - Power amp

Sampling

- Convert continuous-time signals to discrete-time signals by periodically picking up the instantaneous values
 - Represented as a sequence of numbers: pulse code modulation (PCM)
 - Sampling period (T_s) : the amount of time between samples
 - Sampling rate $(f_s = 1/T_s)$

Signal notation

$$x(t) \to x(nT_s)$$

Sampling Theorem

- What is an appropriate sampling rate?
 - Too high: increase data rate
 - Too low: become hard to reconstruct the original signal
- Sampling Theorem
 - In order for a band-limited signal to be reconstructed fully, the sampling rate must be greater than twice the maximum frequency in the signal

$$f_s > 2 \cdot f_m$$

 f_s : sampling rate f_m : maximum frequency

Half the sampling rate is called Nyquist frequency $(f_s/2)$

Aliasing

 If the sampling rate is less than twice the maximum frequency, the high-frequency content is folded over to lower frequency range

Aliasing in Frequency Domain

• For general signals, high-frequency content is folded over to lower frequency range

To avoid Aliasing

• Increase sampling rate

$$f_s > 2 \cdot f_m$$

• Or use lowpass filters before sampling

Example of Aliasing

Example of Aliasing in Video

https://www.youtube.com/watch?v=jHS9JGkEOmA

Quantization

- Discretizing the amplitude of real-valued signals
 - Round the amplitude to the nearest discrete steps
 - The discrete steps are determined by the number of bit bits
 - N bits can range from -2^{N-1} to $2^{N-1}-1$

Quantization Error

- Quantization causes noise
 - Average power of quantization noise: obtained from the probability density function (PDF) of the error

Root mean square (RMS) of noise

$$\sqrt{\int_{-1/2}^{1/2} x^2 p(e) dx} = \sqrt{\frac{1}{12}}$$

- Signal to Noise Ratio (SNR)
 - Based on average power

RMS of full-scale sine wave

$$20\log_{10}\frac{S_{\rm rms}}{N_{\rm rms}} = 20\log_{10}\frac{2^{B-1}/\sqrt{2}}{\sqrt{1/12}} = 6.02B + 1.76 \,\rm{dB}$$

Digital Audio Standards

- Determined by the limit in human hearing
 - Maximum audible frequency (bandwidth): 20kHz
 - Dynamic range: depends on frequency (the maximum is about 120dB)

Digital Audio Standards

- Compact disc
 - Sampling rate: 44.1 kHz: > 2 x 20 kHz
 - Bit depth: 16 bits: SNR = 98.08dB
- Blu-ray disc / professional audio
 - Sampling rate: 48 / 96 /192kHz: > 2 x 20 kHz
 - Bit depth: 16 / 20 / 24 bits
- Telephone
 - Sampling rate: 8 / 16 kHz
 - Bit depth: 8 bits (with companding)

Playback Rate Conversion

- Playback rate does not have to be the same as the recording rate
- Adjusting the playback rate given the recorded audio creates different tones
 - Sliding tapes on the magnetic header in a variable speed
 - Speeding down: "monster-like"
 - Speeding up: "chipmunk-like"
 - It can be even negative rate: reverse playback

Demo: Playback Rate Conversion

• <u>https://musiclab.chromeexperiments.com/Voice-Spinner</u>

Resampling

• Reconstruct the original signal and sample it with a new sampling rate

- For a digital system with a constant playback rate
 - Up-sampling makes the original have slower speed and lower pitch
 - **Down-sampling** makes the original have **faster speed and higher pitch**

Resampling

• Resampling changes pitch, length and timbre at the same time!

[The DaFX book]

Practice: Audacity

- Recording
- Editing
- Digital Audio Effects