2018 Fall
CTP431: Music and Audio Computing

Automatic Music Generation

Graduate School of Culture Technology, KAIST
Juhan Nam
Outlines

• Early Approaches
  - Markov Models
  - Recombinant Models
  - Cellular Automata
  - Genetic Algorithm

• Recent Advances
  - Neural Networks

• Interactive music generation
Symbolic Music

• Symbolic music is represented as a sequence of notes
Symbolic Music

- Music is structured sequential data

![Harmony Diagram]

- Scale
- Harmony
- Measure
- Beat
- Tick

![Rhythm Diagram]

- Division levels
- Beat level
- Multiple levels

![Form Diagram]

Symbolic Music

- Musical notes are temporally dependent
  - Note-level
  - Beat-level
  - Measure-level
Markov Model

- A random variable $q$ has $N$ states $(S_1, S_2, ..., S_N)$ and, at each time step, one of the states are randomly chosen: $q_t \in \{S_1, S_2, ..., S_N\}$

- The probability distribution for the current state is determined by the previous state(s)
  - The first-order Markov model: $P(q_t|q_1, q_2, ..., q_{t-1}) = P(q_t|q_{t-1})$
  - The second-order Markov model: $P(q_t|q_1, q_2, ..., q_{t-1}) = P(q_t|q_{t-1}, q_{t-2})$
Markov Model

• Example: simple melody generation
  - $q_t \in \{C, D, E\}$
  - The transition probability matrix 3 by 3

\[
\begin{align*}
P(q_t = C|q_{t-1} = C) &= 0.7 \\
P(q_t = D|q_{t-1} = C) &= 0.1 \\
P(q_t = E|q_{t-1} = C) &= 0.2 \\
P(q_t = C|q_{t-1} = D) &= 0.2 \\
P(q_t = D|q_{t-1} = D) &= 0.6 \\
P(q_t = E|q_{t-1} = D) &= 0.2 \\
P(q_t = C|q_{t-1} = E) &= 0.3 \\
P(q_t = D|q_{t-1} = E) &= 0.1 \\
P(q_t = E|q_{t-1} = E) &= 0.6
\end{align*}
\]
Markov Model

• The transition matrix can be learned from data
  - Dancing Markov Gymnopédies: https://codepen.io/teropa/pen/bRqYVj/

• Generated music
  - Learned with Satie's "Gymnopédies" and "Trois Gnossiennes"
    - https://www.youtube.com/watch?v=H3xgdDTrv1c
  - Learned with Bach's "Toccata and Fugue in D minor" (BWV 565)
    - https://www.youtube.com/watch?v=llOiAK0x4vA
Example: Illiac Suite

• The first computer-generated composition (1956)
  - Lejaren Hiller and Leonard Issacson
  - They used Markov models of variable order to select notes with different lengths

• Music
  - https://www.youtube.com/watch?v=n0njBFLQSk8&list=PLIVblwUBdcStsNpI0v4OCbC5k-mIDcyaR
Recombinant Music

• Musical Dice Game
  - Generate from pre-composed small pieces by random draws
  - The table of me preserves musical “style”

\[11^{16} = 45,949,729,863,572,161\] variations

https://imslp.org/wiki/Musikalisches_W%C3%BCrfelspiel,_K.516f_(Mozart,_Wolfgang_Amadeus) Mozart K. 516F
Recombinant Music

• David Cope’s Experiments in Musical Intelligence (EMI)
  - Segment and reassemble existing pieces of music by pattern matching
  - Create a new piece of music that preserves the style of the original

Augmented Transition Networks (David Cope)
Infinite Jukebox

• Music mash-up using beat-level self-similarity within a song

http://infinitejukebox.playlistmachinery.com/
“In C”

- Ted Riley’s ensemble music
  - Also called “Minimal music”

“In C”
by Terry Riley

Instruction for beginners

1 Any number of people can play this piece on any instrument or instruments (including voice).

2 The piece consists of 53 melodic patterns to be repeated any amount of times. You can choose to start a new pattern at any point. The choice is up to the individual performer! We suggest beginners are very familiar with patterns 1-12.

3 Performers move through the melodic patterns in order and cannot go back to an earlier pattern. Players should try to stay within 2-3 patterns of each other.

4 If any pattern is too technically difficult, feel free to move to the next one.

5 The eighth note pulse is constant. Always listen for this pulse. The pulse for our experience will be piano and Orff instruments being played on the stage.

6 The piece works best when all the players are listening very carefully. Sometimes it is better to just listen and not play. It is important to fit into the group sound and understand how what you decide to play affects everybody around you. If you play softly, other players might follow you and play soft. If you play loud, you might influence other players to play loud.

7 The piece ends when the group decides it ends. When you reach the final pattern, repeat it until the entire group arrives on this figure. Once everyone has arrived, let the music slowly die away.

Source: [https://www.musicinst.org/sites/default/files/attachments/In%20C%20Instructions%20for%20Beginners.pdf](https://www.musicinst.org/sites/default/files/attachments/In%20C%20Instructions%20for%20Beginners.pdf)

Source: [https://nmbx.newmusicusa.org/terry-rileys-in-c/](https://nmbx.newmusicusa.org/terry-rileys-in-c/)

[https://www.youtube.com/results?search_query=Terry+Riley+In+C](https://www.youtube.com/results?search_query=Terry+Riley+In+C)
Cellular Automata

- A cell-based state evolution model
  - Determines the **state** of each **cell** using **neighbors** and a **rule set**
  - A Wolfram model example:

    ![Generation 0](image1)
    ![Rule Set](image2)
    ![Generation 1](image3)

- Related to self-replicating patterns in biology

Conway’s Game of Life

• 2D cellular automata
  - Rules of life
    - Death (1→0): overpopulation (>=4) or loneliness (<=1)
    - Birth (0→1): 3 neighbors are alive
    - Otherwise, stay in the same state

• Demos:
  - http://www.cappel-nord.de/webaudio/conways-melodies/
  - http://nexusosc.com/gameofreich/
  - http://blipsoflife.herokuapp.com/

Source: https://natureofcode.com/book/chapter-7-cellular-automata/
**WolframTones**

- Automatic music generation system based on cellular automata

Mapping to musical notes by rules

- Demo: [http://tones.wolfram.com/generate](http://tones.wolfram.com/generate)
Statistical Models

• As aforementioned, music is highly structure sequence data. Thus, we can model the sequence using an auto-regressive model.

\[ p(q_t | q_1, ..., q_{t-1}) \]

- \( q_t \): note features

• In the first-order Markov model, it was simplified to \( p(q_t | q_{t-1}) \)
  - However, it explains only short-term relations among notes

• Can we model the long-term relations using more complicated model?
Toy Example

3 + 5 = 18
4 + 4 = 20
6 + 7 = 48
8 + 9 = 80
9 + 10 = ?

Note that “+” is not addition here
Toy Example

3 + 5 = 18
4 + 4 = 20
6 + 7 = 48
8 + 9 = 80
9 + 10 = ?

Note that “+” is not addition here.

\[
y = f(x_1, x_2)
\]
\[
y = x_1 \times (x_2 + 1)
\]
Toy Example

2 + 2 = 6
3 + 6 = 12
4 + 5 = 19
6 + 10 = 40
7 + 18 = ?

Note that “+” is not addition here
Toy Example

\[ 2 + 2 = 6 \]
\[ 3 + 6 = 12 \]
\[ 4 + 5 = 19 \]
\[ 6 + 10 = 40 \]
\[ 7 + 18 = ? \]

\[ y = f(x_1, x_2) \]
\[ y = \sqrt{x_1 + x_2} + x_1^2 \]

Note that “+” is not addition here.
Neural Network

• A learning model based on multi-layered networks
  - The basic model (MLP) is composed of linear transforms and element-wise nonlinear functions

\[
\begin{align*}
  h^{(1)} &= g^{(1)}(W^{(1)}x + b^{(1)}) \\
  h^{(2)} &= g^{(2)}(W^{(2)}h^{(1)} + b^{(2)}) \\
  h^{(3)} &= g^{(3)}(W^{(3)}h^{(2)} + b^{(3)}) \\
  \hat{y} &= \sigma(h^{(3)})
\end{align*}
\]

Multi-Layer Perceptron (MLP)
Neural Network

• The Neural network is trained via error back-propagation

Forward Computation

\[ L(W^{(old)}) \]

\[ \begin{align*}
    x & \rightarrow W^{(1)} & \rightarrow h^{(1)} \\
    & \rightarrow W^{(2)} & \rightarrow h^{(2)} \\
    & \rightarrow W^{(3)} & \rightarrow h^{(3)} \\
    & \rightarrow W^{(4)} & \rightarrow \hat{y}
\end{align*} \]

\[ \frac{\partial L(W^{(old)})}{\partial W^{(old)}} \]

Gradient descent

\[ W_{ij}^{(new)} = W_{ij}^{(old)} - \mu \frac{\partial L(W_{ij}^{(old)})}{\partial W_{ij}^{(old)}} \]
MLP Demo and visualization

• https://playground.tensorflow.org
The Toy Example

• The neural network can learn highly complicated relations between input and output

\[ W_i^{\text{new}} \leftarrow W_i^{\text{old}} - \mu \frac{\partial \|\hat{y} - y\|}{\partial W_i} \]
The Toy Example

• The neural network can learn highly complicated relations between input and output.
Deep Neural Network

• Use “deep” layers
  - Many parameters to explain the data distribution
  - Need more data and fast computation (e.g. GPU)
  - Many efficient training techniques
Deep Neural Network

- Universal model regardless of the domain (image, audio, text, …)
Deep Neural Network

- Thus, we can apply the model to music!
  - However, we need to handle long sequences and variable lengths.
Recurrent Neural Networks (RNN)

- Sequence-to-sequence modeling
Examples

• FolkRNN
  - https://folkrnn.org/

• DeepBach

• DeepJazz
  - https://deepjazz.io/

• PerformanceRNN
  - https://magenta.tensorflow.org/performance-rnn
Auto-Encoder

- Neural networks configured to reconstruct the input
  - The latent vector contains compressed information of the input
  - The decoder can be used to generate data: Variational Auto-Encoder (VAE) is more often used

Train to minimize the reconstruction error: \( L(W; x) = \|x - \hat{x}\|^2 \)
Generation Examples

• Interpolation from the latent space

(Auto-Encoding Variational Bayes, Kingma and Welling, 2014)
Google Magenta Project

- https://magenta.tensorflow.org/
Interactive Music Generation

• Interactive composition/performance
  - http://eclipticalis.com/
  - https://junshern.github.io/algorithmic-music-tutorial/
  - https://incredible-spinners.glitch.me/

• Games
  - https://techbelly.github.io/game-soundtrack/webaudio/
  - http://musiccanbefun.edankwan.com/

• Educational
  - https://learningmusic.ableton.com/