2018 Fall CTP431: Music and Audio Computing

Automatic Music Generation

Graduate School of Culture Technology, KAIST Juhan Nam

Outlines

- Early Approaches
 - Markov Models
 - Recombinant Models
 - Cellular Automata
 - Genetic Algorithm
- Recent Advances
 - Neural Networks
- Interactive music generation

Symbolic Music

• Symbolic music is represented as a sequence of notes

Symbolic Music

• Music is structured sequential data

Symbolic Music

- Musical notes are temporally dependent
 - Note-level
 - Beat-level
 - Measure-level

Markov Model

- A random variable q has N states $(S_1, S_2, ..., S_N)$ and, at each time step, one of the states are randomly chosen: $q_t \in \{S_1, S_2, ..., S_N\}$
- The probability distribution for the current state is determined by the previous state(s)
 - The first-order Markov model: $P(q_t|q_1, q_2, ..., q_{t-1}) = P(q_t|q_{t-1})$
 - The second-order Markov model: $P(q_t|q_1, q_2, \dots, q_{t-1}) = P(q_t|q_{t-1}, q_{t-2})$

Markov Model

- Example: simple melody generation
 - $q_t \in \{C, D, E\}$
 - The transition probability matrix 3 by 3

Markov Model

- The transition matrix can be learned from data
 - Dancing Markov Gymnopédies: <u>https://codepen.io/teropa/pen/bRqYVj/</u>

- Generated music
 - Learned with Satie's "Gymnopédies" and "Trois Gnossiennes"
 - <u>https://www.youtube.com/watch?v=H3xgdDTvvlc</u>
 - Learned with Bach's "Toccata and Fugue in D minor" (BWV 565)
 - https://www.youtube.com/watch?v=IIOiAK0x4vA

Example: Illiac Suite

- The first computer-generated composition (1956)
 - Lejaren Hiller and Leonard Issacson
 - They used Markov models of variable order to select notes with different lengths

- Music
 - <u>https://www.youtube.com/watch?v=n0njBFLQSk8&list=PLIVblwUBdcStsN</u>
 <u>pl0v4OCbC5k-mIDcyaR</u>

Recombinant Music

- Musical Dice Game
 - Generate from pre-composed small pieces by random draws
 - The table of me preserves musical "style"

https://imslp.org/wiki/Musikalisches W%C3%BCrfelspiel, K.516f (Mozart, Wolfgang Amadeus)

Recombinant Music

- David Cope's Experiments in Musical Intelligence (EMI)
 - Segment and reassemble existing pieces of music by pattern matching
 - Create a new piece of music that preserves the style of the original

Augmented Transition Networks (David Cope)

Infinite Jukebox

• Music mash-up using beat-level self-similarity within a song

http://infinitejukebox.playlistmachinery.com/

"In C"

- Ted Riley's ensemble music
 - Also called "Minimal music"

"In C" by Terry Riley

Instruction for beginners

1 Any number of people can play this piece on any instrument or instruments (including voice).

2 The piece consists of 53 melodic patterns to be repeated any amount of times. You can choose to start a new pattern at any point. The choice is up to the individual performer! We suggest beginners are very familiar with patterns 1-12.

3 Performers move through the melodic patterns in order and cannot go back to an earlier pattern. <u>Players should try to stay within 2-3 patterns of each other.</u>

4 If any pattern is too technically difficult, feel free to move to the next one.

5 The eighth note pulse is constant. <u>Always listen for this pulse.</u> The pulse for our experience will be piano and Orff instruments being played on the stage.

6 The piece works best when all the players are listening very carefully. <u>Sometimes it is</u> <u>better to just listen and not play. It is important to fit into the group sound and</u> <u>understand how what you decide to play affects everybody around you.</u> If you play softly, other players might follow you and play soft. If you play loud, you might influence other players to play loud.

7 The piece ends when the group decides it ends. <u>When you reach the final pattern,</u> repeat it until the entire group arrives on this figure. Once everyone has arrived, let the music slowly die away.

Source: https://www.musicinst.org/sites/default/files/attachments/In%20C%20Instructions%20for%20Beginners.pdf

Figure 1.1. Score of In C (copyright Terry Riley, 1964).

Source: https://nmbx.newmusicusa.org/terry-rileys-in-c/

https://www.youtube.com/results?search_query=Terry+Riley+In+C

Cellular Automata

- A cell-based state evolution model
 - Determines the **state** of each **cell** using **neighbors** and **a rule set**
 - A Wolfram model example:

- Related to self-replicating patterns in biology

Source: https://natureofcode.com/book/chapter-7-cellular-automata/

Conway's Game of Life

- 2D cellular automata
 - Rules of life
 - Death $(1 \rightarrow 0)$: overpopulation (>=4) or loneliness (<=1)
 - Birth $(0 \rightarrow 1)$: 3 neighbors are alive
 - Otherwise, stay in the same state

Two-dimensional cellular automata

Source: https://natureofcode.com/book/chapter-7-cellular-automata/

- Demos:
 - http://www.cappel-nord.de/webaudio/conways-melodies/
 - http://nexusosc.com/gameofreich/
 - http://blipsoflife.herokuapp.com/

WolframTones

• Automatic music generation system based on cellular automata

Mapping to musical notes by rules

• Demo: <u>http://tones.wolfram.com/generate</u>

Statistical Models

 As aforementioned, music is highly structure sequence data. Thus, we can model the sequence using an auto-regressive model.

 $q_1 \; q_2 \; q_3 \; \; q_4 \ldots$

 $p(q_t | q_1, \dots, q_{t-1})$

 q_t : note features

- In the first-order Markov model, it was simplified to $p(q_t|q_{t-1})$
 - However, it explains only short-term relations among notes
- Can we model the long-term relations using more complicated model?

$$3 + 5 = 18$$

 $4 + 4 = 20$
 $6 + 7 = 48$
 $8 + 9 = 80$
 $9 + 10 = ?$

$$3 + 5 = 18$$

$$4 + 4 = 20$$

$$6 + 7 = 48$$

$$y = f(x_1, x_2)$$

$$y = x_1 \times (x_2 + 1)$$

$$8 + 9 = 80$$

$$9 + 10 = ?$$

2 + 2 = 63 + 6 = 124 + 5 = 196 + 10 = 407 + 18 = ?

$$2 + 2 = 6$$

$$3 + 6 = 12 \qquad y = f(x_1, x_2)$$

$$4 + 5 = 19 \qquad y = \sqrt{x_1 + x_2} + {x_1}^2$$

$$6 + 10 = 40$$

$$7 + 18 = ?$$

Neural Network

- A learning model based on multi-layered networks
 - The basic model (MLP) is composed of linear transforms and element-wise nonlinear functions

Multi-Layer Perceptron (MLP)

$$h^{(1)} = g^{(1)}(W^{(1)}x + b^{(1)})$$

$$h^{(2)} = g^{(2)}(W^{(2)}h^{(1)} + b^{(2)})$$

$$h^{(3)} = g^{(3)}(W^{(3)}h^{(2)} + b^{(3)})$$

$$\hat{y} = \sigma(h^{(3)})$$
Sigmoid

Neural Network

• The Neural network is trained via error back-propagation

MLP Demo and visualization

https://playground.tensorflow.org

The Toy Example

• The neural network can learn highly complicated relations between input and output

The Toy Example

• The neural network can learn highly complicated relations between input and output

53.9999...

Deep Neural Network

- Use "deep" layers
 - Many parameters to explain the data distribution
 - Need more data and fast computation (e.g. GPU)
 - Many efficient training techniques

Deep Neural Network

• Universal model regardless of the domain (image, audio, text, ...)

Deep Neural Network

- Thus, we can apply the model to music!
 - However, we need to handle long sequences and variable lengths

Recurrent Neural Networks (RNN)

• Sequence-to-sequence modeling

Examples

- FolkRNN
 - https://folkrnn.org/
- DeepBach
 - <u>http://www.flow-machines.com/archives/deepbach-polyphonic-music-generation-bach-chorales/</u>
- DeepJazz
 - https://deepjazz.io/
- PerformanceRNN
 - https://magenta.tensorflow.org/performance-rnn

Auto-Encoder

- Neural networks configured to reconstruct the input
 - The latent vector contains compressed information of the input
 - The decoder can be used to generate data: Variational Auto-Encoder (VAE) is more often used

Train to minimize the reconstruction error: $L(W; x) = ||x - \hat{x}||^2$

Generation Examples

• Interpolation from the latent space

в в

(Auto-Encoding Variational Bayes, Kingma and Welling, 2014)

Google Magenta Project

• <u>https://magenta.tensorflow.org/</u>

Interactive Music Generation

- Interactive composition/performance
 - http://eclipticalis.com/
 - https://junshern.github.io/algorithmic-music-tutorial/
 - http://teropa.info/blog/2017/01/23/terry-rileys-in-c.html
 - https://incredible-spinners.glitch.me/
- Games
 - https://techbelly.github.io/game-soundtrack/webaudio/
 - http://musiccanbefun.edankwan.com/
- Educational
 - https://learningmusic.ableton.com/